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Abstract: Image Segmentation is a process used for dividing 
images into different regions to allow for simplification of image 
analysis techniques. We formulate image segmentation as a max-
flow, min-cut problem and develop a graph cut based method of 
interactive image segmentation that segments the foreground and 
background from images. The performance of our method is 
evaluated using a subset of images from the Berkeley 
Segmentation Dataset and we track the performance of our 
method with respect to the number of prelabelled pixels. We find 
that the performance of our method is dependent on the 
probability and spatial distributions of the pixels in the 
foreground and background of an image and suggest ways to 
further improve the performance of our method.  

Index terms: Segmentation, Graph, minimum-cut, maxflow 

I. INTRODUCTION 

Image Segmentation is a process of dividing an image into 
different regions based on the characteristics of the pixels in the 
image[1]. It can be used to partition an image’s background and 
foreground or to determine object boundaries within an image. 
This simplification of images, through segmentation, allows the 
analysis of areas of interest for applications such as medical 
imaging diagnosis or object detection for self-driving vehicles.  

Interactive segmentation is the process of partitioning 
images where some pixels and the segments they belong to, have 
been identified beforehand. These pixels are then segmented 
into their prelabelled segments and act as hard constraints that 
allow a user to provide clues on what they want to segment [2].  
This characteristic makes interactive segmentation ideal for 
applications where human guidance is available or preferred to 
help segment an image such as photo editing and medical image 
segmentation. 

Separating Images by contextual regions such as background 
and foreground can be performed with clustering or Graph-
based segmentation approaches. Segmentation by clustering is 
done by clustering pixels based on selected pixel features such 
as intensity, color, and texture. While this method is simple, it 
has the drawback of being subjective to initial settings for cluster 
centers, and being highly sensitive to outliers. 

Graph based segmentation methods are executed by 
converting the pixels in an image to fully connected graphs that 
perform segmentation through finding the maximum-flow  
minimum-cut of the graph. Although these methods are 
computationally complex, they have the advantage of not 
requiring training.  

II. PROBLEM FORMULATION 

To formulate image segmentation as an optimization 
problem, we consider a graph representation, G = (V,E), of an 

image. In the graph representation, the vertices, V,  represent the 
pixels while the edges, E, represent neighboring pairs of pixels. 
Each pixel i in the graph also has a probability 𝑎𝑖 and 𝑏𝑖 that it 
belongs to the foreground or background, respectively. Next, we 
introduce a separation penalty, 𝑝

𝑖𝑗
, that makes the segment 

boundaries smoother by penalizing neighboring pixels i and j for 
being placed in different segments.  Considering 𝑎𝑖, 𝑏𝑖, and 𝑝

𝑖𝑗
 , 

the image segmentation problem can be formulated as finding a 
partition (A, B) that splits the pixels into foreground and 
background sets respectively, such that the objective function, 
𝑞(𝐴, 𝐵), as shown below, is maximized[3]. 

𝑞(𝐴, 𝐵) = ∑ 𝑎∈ + ∑ 𝑏∈ − ∑ 𝑝  (,)∈ா
|∩{,}|ୀଵ

 (1) 

A. Formulation as a Minimum-cut Problem 

The image segmentation problem can be equated to a 
minimum-cut problem. The original objective function can be 
transformed from a maximization function to a minimization 
function, as shown below. 
 

𝑞(𝐴, 𝐵) = ∑ 𝑎∈ + ∑ 𝑏∈ − ∑ 𝑝(,)∈ா
|∩{,}|ୀଵ

  (2) 

𝑞(𝐴, 𝐵) = ∑ 𝑎 + 𝑏 − ∑ 𝑏∈ − ∑ 𝑎∈ − ∑ 𝑝(,)∈ா
|∩{,}|ୀଵ

(3) 

thus maximizing 𝑞(𝐴, 𝐵)is equivalent to minimizing 𝑞′(𝐴, 𝐵), 
 

𝑞′(𝐴, 𝐵) = ∑ 𝑏∈ + ∑ 𝑎∈ + ∑ 𝑝(,)∈ா
|∩{,}|ୀଵ

 (4) 

 
A source node (s) and a sink node (t) can then be added to 

the original graph to represent the foreground and background 
regions of the image, respectively. All other nodes in the graph 
are connected to the source and sink. 𝑎 𝑖 and 𝑏𝑖 , then represent 
the capacities of the edges between the nodes and source and 
sink respectively. Lastly, all undirected edges between pairs of 
nodes are replaced with two directed edges with opposite 
directions. 



 
Fig. 1. Resulting directed graph with addition of source (s) and sink (t) nodes. 
[9] 

The capacity of the s-t cut, 𝑐(𝐴, 𝐵), is defined below and 
consists of three terms. The K and L terms account for cuts to 
edges connecting the source and sink nodes respectively, to 
other nodes. Meanwhile, the M term accounts for cuts to edges 
that connect neighboring pixels. 

 
𝑐(𝐴, 𝐵) = 𝐾 + 𝐿 + 𝑀, 

  𝐾 = ∑ 𝑏∈ , 𝐿 = ∑ 𝑎∈ , 𝑀 = ∑ 𝑝(,)∈ா
|∩{,}|ୀଵ

  (5) 

Since c(A, B) is equivalent to q’(A, B), the image 
segmentation problem can be solved through minimizing c(A, 
B) by finding the minimum-cut that separates the source and 
sink. 

III. METHODS  

Since image segmentation has been posed as a minimum-cut 
problem, it can be solved through well-established optimization 
algorithms utilizing the max-flow min-cut theorem. In order to 
use this method, the image is first preprocessed and converted 
to a graph. 

 

A. Preprocessing 

The first step in converting the image to a graph was 
transforming it from RGB to grayscale. This step, while not 
strictly necessary, helped simplify the conversion to a graph. 
The cvtColor() function from the OpenCV python library maps 
red, green, and blue pixel values to a single intensity value and 
was used to transform the input RGB image to grayscale. The 
equation used for the mapping is shown below [4]. 

𝐼 = 0.299 × 𝑅 +  0.587 × 𝐺 + 0.114 × 𝐵     (5) 
In the preprocessing stage, the foreground and background 

pixels were also manually selected. This was done iteratively 
in three stages with increasing coverage so that the 
performance of our method could be tracked with respect to 
the number of pixels manually prelabelled. The ranges of 
coverages of the manual selections as percents of the entire 
image are shown in table 1.  

TABLE I.  COVERAGE OF THE MANUAL SELECTIONS AS PERCENT OF 
THE ENTIRE IMAGE 

Amount of Prelabelled Pixels Range of Coverage 
Minimal .36% - .74% 
Moderate 1.70% - 3.61% 
High 17.50% - 39.68% 

 

B. Source and Sing Edge Capacities 

The capacities of the edges between the nodes and the 
source and sink represent the probability that the node belongs 
in the foreground or background segment. These probabilities 
were estimated from probability density functions based on the 
labeled background and foreground nodes. As suggested by [3], 
the capacities of the edges were calculated using equations 6 
and 7, as shown below, where 𝑓

𝐴
 and 𝑓

𝐵
 are the gaussian 

distributions generated from the labeled foreground and 
background nodes. 

𝑎𝑖 = − ln ቀ𝑓
𝐵

(𝐼𝑖)ቁ    (6) 

𝑏𝑖 = − ln ቀ𝑓
𝐴

(𝐼𝑖)ቁ       (7) 

 The labeled background, and foreground nodes were 
assigned maximum sink, and source edge capacities to force the 
graph cut algorithm to categorize the prelabelled pixels in the 
correct segment. These maximum capacity values were 
calculated based on the set of 𝑎𝑖 and 𝑏𝑖 for all the pixels in the 
image.  

C. Neighboring Node Edge Capacities 

The edge capacity of neighboring nodes is related to the 
similarity of their intensity values. The equation of the edge 
capacity of neighboring nodes is given by equation (8) where the 
σ scales the penalization term ൫𝐼 − 𝐼൯. 

𝑝
𝑖𝑗

= exp ൬−
(𝐼𝑖−𝐼𝑗)2

2𝜎2 ൰       (8) 

 

Using the resulting graph obtained from the image, and the 
capacities for our nodes and edges, we calculated the minimum 
cut of the directed graph. 

D. Finding the Minimum Cut 

The NetworkX python library was used to find the 
maximum flow of the image graph. The NetworkX library 
provides several algorithms for finding the maximum flow of a 
graph including Edmonds Karp, Preflow Push, and Shortest 
Augmenting Path [6]. The time complexity of these algorithms, 
given the number of pixels, 𝑝, in a graph representation of an 
image is given in table 2.  

 

TABLE II.  TIME COMPLEXITY OF MAXIMUM FLOW ALGORITHMS FROM 
THE NETWORKX LIBRARY. 

Algorithm Time Complexity 
Edmonds Karp 𝑂(𝑝ଷ) 
Preflow Push 𝑂(𝑝ଶ.ହ) 
Shortest Augmenting Path 𝑂(𝑝ଷ) 

 



 The Preflow Push algorithm for finding the maximum flow 
was used in this work since it has the smallest time complexity 
given the number of pixels in an image. 

 
Lastly, the nodes in the graph were partitioned by cutting 

the saturated edges from the residual graph of the maximum 
flow graph [7].     

 

IV. PERFORMANCE EVALUATION 

Once the image was segmented, the performance of the 
proposed method was evaluated by comparing the method’s 
output with the ground truth for a set of images. The intersection 
over union (IoU) and F1 score metrics were used to measure the 
performance of the proposed method.  

 The IoU is a measure of overlap between the predicted 
segmentation and the ground truth and is calculated using 
equation (9) where A is the set of pixels in the predicted segment 
and B is the set of pixels in the ground truth[5].  Equation (9) 
also restates IoU in terms of true positives (TP), false positives 
(FP), and false negatives (FN). 

𝐼𝑜𝑈 =
|∩|

|⋃|
=

்

்ାிାிே
     (9) 

 

One key feature of the IoU metric is that the size of a 
segment has no effect on its IoU score. This made the IoU metric 
ideal since it provides a way to measure the performance of the 
proposed method on a diverse set of images where the 
foreground and background vary in size. 

F1 score is another common performance metric used to 
measure segmentation performance. F1 score in terms of true 
positives (TP), false positives (FP), and false negatives (FN) as 
well as precision (P) and recall (R) is given below.  

𝐹1 = 2 ∗
∙ோ

ାோ
 =

்

்ା.ହ∙(ிାி )
  (10) 

 

Although the F1 score is very similar to IoU, it was used in 
this work primarily to compare the performance of our method 
to other works. 

V. DATASET 

A set of images from the Berkeley Segmentation dataset 
were used to test and evaluate our method. This dataset contains 
both grayscale and color images with accompanying hand label 
segmentation labels. The dataset also has accompanying 
benchmarks for different image segmentation methods that 
could be used for comparison with our minimum-cut graph 
segmentation method [8].  

The Berkeley Segmentation contains images with a varying 
number of segments and the four images with two segments 
were all used to evaluate the graph-based segmentation method. 
To increase the number of images used for evaluating our 
segmentation method, the segments from the ground truth of 12 
additional images from the Berkeley Segmentation dataset were 
reduced through combining them together. The set of images 

used to measure the performance of our segmentation method 
are shown in figure 2. 

 
Fig. 2. Subset of Images from the Berkeley Segmentation Dataset Used to 
Evaluate Performance. 

VI. RESULTS 

The F1 scores of our method for various images from the 
Berkeley Segmentation dataset with minimal, moderate, and 
high numbers of prelabelled pixels are shown in figure 3. Figure 
3 also contains the best F1 scores of other works for the images 
used to evaluate our method. Figure 4 contains similar 
information to figure 3 and uses IoU scores to show the 
performance of our method.   

 
Fig. 3. F1 Scores of the Max-flow Min-cut Graph Based Image Segmentation 
for various images from the Berkeley Image Segmentation dataset. 

 
Fig. 4. IoU Scores of the Max-flow Min-cut Graph Based Image Segmentation 
for various images from the Berkeley Image Segmentation dataset.  



Amongst the 16 images used to measure the performance of 
our segmentation method, images 296059 and 42049 had the 
highest average IoU, and F1 scores. Meanwhile, images 175043, 
and 291000 had the lowest average IoU, and F1 scores.  

Adding more prelabelled pixels generally increased the 
performance of our segmentation method. However, the 
performance of our segmentation method was lower for  
moderate than minimal numbers of prelabelled pixels in the case 
of certain images. These include images 291000, 69015, 
175043, and 130026. Conversely images 101085, 163085, 
296059, 3096, and 42049, saw a very small change in 
segmentation performance based on the number of hand labelled 
pixels.  

VII. DISCUSSION  

A. Performance Differences with Respect to Images 

Our segmentation method had a large variance in its 
performance based on the image it attempted to segment. This 
was largely due to how well the image fit our assumptions for 
estimating the probability that a pixel belongs to the foreground 
or background in the process of calculating the source and sink 
edge capacities of the graph representation of the image. Namely 
that the distribution of the foreground and background are 
normal and distinct from one another.  

Our segmentation method was able to segment image 
296059 with a high level of accuracy. The actual distributions of 
the pixel values in the ground truth foreground and background 
segments are shown in figure 4 as histograms. Additionally, 
figure 4 also has Gaussian distributions fit over the foreground 
and background distributions. Assuming that the hand labelled 
pixels have the same distribution as the segments they belong to, 
figure 5 shows the probability density functions used to calculate 
the source and sink edge capacities in an ideal case.  

 
Fig. 5. Distribution of Foreground and Background Pixels in Image 296059 

Based on figure 5, the foreground and background pixels of 
image 296059 are distributed normally and have distinct 
Gaussian distributions. The probabilities that pixels belong to 
the foreground, and background based on the Gaussian 
distributions from figure 5 are shown as heat maps in figure 6. 

The ground truth segmentation is also shown as a background in 
figure 6 to help discern the location of pixels.    

 
Fig. 6.  Heatmaps of the Probability that Pixels Belong in the Foreground and 
Background for Image 296059 

Figure 6 confirms that, given the hand labelled pixels 
accurately approximate the distributions of the segments, the 
sink, and source capacities of the graph of image 296059 will 
have different values for each node. This will allow our 
segmentation method to accurately segment image 296059 as 
confirmed by our results shown in figure 3 and 4. 

Our segmentation method had difficulties segmenting image 
175043 with a high level of accuracy. The distribution of pixels 
in the foreground and background segments  along with the 
estimated normal distribution of segments is shown in figure 7. 
The heat map of image 175043 based on estimated probability 
density functions from figure 7 is shown in figure 8.  

  

Fig. 7. Distribution of Foreground and Background Pixels in Image 175043 



 
Fig. 8. Heatmaps of the Probability that Pixels Belong in the Foreground and 
Background for Image 175043  

Based on figure 7, even though a Gaussian distribution 
matches the actual distribution of the pixels closely, the 
estimated foreground and background distributions are not 
distinct from one another. As shown in figure 8, this results in 
pixels having similar probabilities of belonging in the 
foreground, and background. Thus our segmentation method has 
poor performance for image 175043 and similar images where 
our assumption that the foreground and background segments 
have distinct distributions is incorrect. 

Our segmentation method also has low performance for 
images where the distribution of the foreground and background 
is not gaussian as is the case for image 130026. The distributions 
of the foreground and background of image 130026 are shown 
in figure 9. Since neither the foreground nor the background 
distributions are normal, the standard deviations of the gaussian 
distribution estimates are relatively high. This caused the pixels 
to have similar low probabilities of belonging in the foreground, 
and background which leads to low segmentation performance.   

 
Fig. 9. Distribution of Foreground and Background Pixels in Image 175043 

 

B. Performance Difference between Minimally, Moderately, 
and Highly Prelabelled Images 

Our segmentation method, when provided with a high 
number of prelabelled pixels, produced the best output since the 
probability that the distribution of the prelabelled pixels matches 
the actual distributions of the foreground and background 
increases with the number of prelabelled pixels.  

 However, with an increase from a minimal number of 
prelabelled pixels to a moderate number of prelabelled pixels, 
an improvement in performance was not observed for all 
images. Image 291000 of a horse is such an image where adding 
more prelabelled pixels did not improve the performance of our 
method. Figure 10 shows the locations of the prelabelled pixels 
superimposed over image 291000. As can be observed in the 
image, the foreground and background are very heterogeneous. 
For example, the horse has a local dark area on its mane and a 
local bright red area on its rear. Therefore, it is difficult to 
replicate the distributions of the foreground and background 
with prelabelled pixels that consist of groups of neighboring 
pixels, leading to the observed lowered performance in 
heterogeneous images.  

 
Fig. 10. Left: minimal density image marking. Right: Moderate density image 
marking. 

When the features in different segments, foreground and 
background, are homogenous or nearly homogeneous, the initial 
selection does not have as great of an effect. An example of this 
can be seen in Figure 11, with the bird on the branch against the 
sky as a background.  This is because there are smaller 
pixel gradients with-in the foreground and background, but 
significantly large one separating the segments. The boundary 
penalty factor here will be more pronounced in the locations 
with large pixel intensity differences. 

 

 
Fig. 11. Left: Minimal density image marking. Right: Moderate density image 
marking. 

C. Comparison to Other Segmentation Methods 

The Best Berkeley benchmark algorithms results on the 
images we selected were primarily the gPb-ucm (gray), Ren et 
al. NIPS2012 (gray), and xren (gray) algorithms.  The “gPb-ucm 
(gray)” algorithm is from the paper “Contour Detection and 
Hierarchical Image Segmentation” and uses local contour 
detection cues to perform global spectral clustering.[10]  

The best result for our segmentation method was image 
296059 of an elephant that was segmented using a high number 
of prelabelled pixels. We achieved a IOU of 0.967 and an F1 



Score of 0.942.   The best result from the Berkeley dataset bench 
marks displayed with the segmentation outline resulted in an F1 
score of 0.9 through the use of Boundary Detection Benchmark: 
Algorithm "gPb-ucm (gray)"[10]. The elephant image has 
distinct feature  characteristics on the sky, grass and elephant 
regions of this image, which lead to good F1 scores in the two 
techniques.  

The Ren et al. NIPS2012 (gray) algorithm is introduced 
in “Discriminatively Trained Sparse Code Gradients for 
Contour Detection”[12]. This method uses a clustering method 
to group and classify pixel neighborhoods to identify contours 
in images. 

 Our worst result for image 210088 of a fish in a plant with 
the segmentation using a low number of prelabelled pixels. This 
segmentation resulted in an IOU of 0.042 and an F1 score of 
0.373. The best segmentation of this image in the Berkeley 
benchmarks reported an F1 score of 0.77, through the use of the 
Boundary Detection Benchmark: Algorithm "Ren et al. 
NIPS2012 (gray)"[12].  

In Contrast to our low F1 score for our low marking method, 
our F1 score for this image on our high density marking image 
resulted in an F1 of 0.838, out pperforming the boundary 
detection segmentation method used in the benchmarks.  

Additionally the human segmentation of this image resulted 
in a F1 of 0.28. The reason for failures on this image are due to 
the image being divided into fish and plant, according to the 
ground truth image segmentation. However the plant and the 
fish appear to both be in the focus and in the foreground of this 
image.  

The “xren (gray)” algorithm was introduced in “Multi-Scale 
Improves Boundary Detection in Natural Images"[11]. This 
method is a boundary detection technique that uses local 
boundary cues like contrast, this method is effective with large 
scale detection and small-scale detection, but is sensitive to 
cluttered images. The boundary detection algorithm 
“xren(gray)“  for image segmentation was another high 
performance algorithm on the group of images we segmented. 
The F1 score for xren on the image 196073 of a snake in the 
sand was 0.82. With our graph-based image segmentation using 
the low, medium, and high density marking methods we 
achieved F1 scores of 0.7123,  0.897, and 0.927 respectively.  

VIII. FUTURE WORK  

A significant source of error in our method was due to 
inadequately estimating the probability density functions of 
foreground and background pixels. The probability density 
function estimations can be improved through utilizing a series 
of different probability density functions and choosing the one 
that best fits the prelabeled pixels. Gaussian mixture model 
probability distributions could also be explored in the case of 
complex foreground and background probability distributions. 
Furthermore, the estimated probability density functions could 
be based on the red, blue, and green values of the pixels rather 
than their grayscale values. This would decrease the chances of 
the distributions of the foreground and background being similar 
and would increase the segmentation performance of our 
method.  

Future improvements would be to replace the interactive 
marking step with another method for boundary detection, such 
as connected components or contour detection methods. The 
graph-based method to determine segmentation boundaries 
could be applied to the contour detection methods to modify the 
boundaries in a way that satisfies our objective function.   Image 
thresholding can also be done to split the image into two groups 
based on an intensity threshold. Also a k-means pixel clustering 
segmentation could be used as a replacement for the image 
marking, with the graph method applied to the image with the k-
means cluster assigned labels.  Methods for initial foreground 
and background estimations would complement our graph based 
method, by improving the initial foreground and background 
labels.  
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